Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia.

نویسندگان

  • Christopher Katnik
  • Waldo R Guerrero
  • Keith R Pennypacker
  • Yelenis Herrera
  • Javier Cuevas
چکیده

Sigma receptors are putative targets for neuroprotection following ischemia; however, little is known on their mechanism of action. One of the key components in the demise of neurons following ischemic injury is the disruption of intracellular calcium homeostasis. Fluorometric calcium imaging was used to examine the effects of sigma receptor activation on changes in intracellular calcium concentrations ([Ca(2+)](i)) evoked by in vitro ischemia in cultured cortical neurons from embryonic rats. The sigma receptor agonist, 1,3-di-o-tolyl-guanidine (DTG), was shown to depress [Ca(2+)](i) elevations observed in response to ischemia induced by sodium azide and glucose deprivation. Two sigma receptor antagonists, metaphit [1-(1-(3-isothiocyanatophenyl)-cyclohexyl)-piperidine] and BD-1047 (N-[2-3,4-dichlorophenyl)-ethyl]-N-methyl-2-(dimethylamino)ethylamine), were shown to blunt the ability of DTG to inhibit ischemia-evoked increases in [Ca(2+)](i), revealing that the effects are mediated by activation of sigma receptors and not via the actions of DTG on nonspecific targets such as N-methyl-d-aspartate receptors. DTG inhibition of ischemia-induced increases in [Ca(2+)](i) was mimicked by the sigma-1 receptor-selective agonists, carbetapentane, (+)-pentazocine and PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], but not by the sigma-2-selective agonist, ibogaine, showing that activation of sigma-1 receptors is responsible for the effects. In contrast, DTG, carbetapentane, and ibogaine blocked spontaneous, synchronous calcium transients observed in our preparation at concentrations consistent with sigma receptor-mediated effects, indicating that both sigma-1 and sigma-2 receptors regulate events that affect [Ca(2+)](i) in cortical neurons. Our studies show that activation of sigma receptors can ameliorate [Ca(2+)](i) dysregulation associated with ischemia in cortical neurons and, thus, identify one of the mechanisms by which these receptors may exert their neuroprotective properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Afobazole Modulates Neuronal Response to Ischemia and Acidosis via Activation of -1 Receptors

Afobazole is an anxiolytic medication that has been previously shown to be neuroprotective both in vitro and in vivo. However, the mechanism(s) by which afobazole can enhance neuronal survival remain poorly understood. Experiments were carried out to determine whether afobazole can decrease intracellular calcium overload associated with ischemia and acidosis and whether the effects of afobazole...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 319 3  شماره 

صفحات  -

تاریخ انتشار 2006